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0(x, z + AZ, w) 
An explicit finite difference solution to the scalar wave equation in 

isotropic, inhomogeneous media is completed by filtering out non- 
physical contributions to the data. This digital, anti-spatial-aliasing 

= f C,(d,z+ o~S)“(AX)~” Q(x, z, o) (4) 
??I=0 

filter and some associated limits on angular frequency are determined. 
The filter is a projection operator determined from a constrained least- 
squares fit and can be implemented in the computer algorithm at either 

in [l], and the depth differencing coefficients (c,‘s) and 

of two places. Furthermore, the filter should be applicable to any 
lateral second-derivative coefficients were determined. A 

exolicit finite difference solution to the wave equation. Unlike a computer algorithm for imaging seismic data based upon 
standard dip filter, this filter is computationally flexible, efficient, and the expression 
necessary in inhomogeneous media with rapid lateral and vertical 
velocity changes. 0 1992 Academic Press, Inc. (x-2nd difference operator) 

1 

INTRODUCTION 

In a previous paper [ 1 ] the two-dimensional scalar wave xe- iw2=‘L’ R(x, 0, w). (5) 
equation in isotropic, inhomogeneous media 

was developed. This expression needs to be altered in order 
4 

R,, -I- R;; - -----RR,,=0 
u2(x, z) 

(1) 
to remove noise due to spatial aliasing. 

FORMULATING THE PROBLEM 
was Fourier transformed from time to angular frequency CO, 
and a coordinate transformation to a retarded time frame In paper [l] the lateral second-difference coefficients 
was invoked yielding the scalar wave equation were determined over the acceptable values of the horizon- 

tal wavenumber, P. What are these values? There are two 

Q,, + 02SQ -F Qz + Q,; = 0, (2) 
upper limits for P: 

(a) For a given spatial sampling Ax, the Nyquist value 
of P will be 

in a shifted coordinate system, where S is the slowness 
function given by 

s=g. (3) (b) Also, a dip angle CI can be defined by sin u = Pv/2w. 
Therefore, if urnax is the maximum dip encountered, then P 

This is the wave equation typically considered for modeling is also constrained by the equation 
and data processing applications in geophysics [;?I. 

An explicit polynomial series solution for Eq. (2) was 20 
IPI d - sin(~,,,), (7) given by V 
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where u represents velocity and w angular frequency. The can be approximated by combining Eqs. (10) and (12) to 
minimum velocity in an area can be used for v in Eq. (2). yield 
Thus, the acceptable range of P is given by 

20 
- sin(cc,,,), n/Ax . 

> 
(8) 

V 

a,+2 i a,cos(PlAx) 
I= 1 

1, IPI <w/v sin(amax) 
= 

0, otherwise. (13) 

Contributions to the data from anything greater than either 
of these values are nonphysical, spatially aliased values. 
They are sometimes referred to as evanescent values. 

Notice in Eq. (4) that SQ appears to be a simple multi- 
plication. However, while Eq. (7) limits the rate of change of 
the waveheld Q with x, SQ is not so limited. SQ can pick up 
contributions outside the limits set by Eq. (S), since there 
are numerous derivatives of SQ with respect to x in the 
operator (8: + SQ)” in Eq. (4). Consequently, high spatial 
frequency instabilities can be introduced into the system 
whenever 

The a’s can be determined from Eq. (13) by minimizing the 
least-squares error between the left- and right-hand sides. 
Filters of this type have been designed for other applica- 
tions. For example, see Bogner and Constantinides [ 33 and 
Phuc and Attikiouze [4]. 

Filter Coefficients 

Generalizing, let us consider some functionf( P) (vs 1) in 
the top line of Eq. (10). The value of a, is determined from 
the condition that the projector is 1 for P = 0, yielding 

a, = 1 - 2 1 a,. 
/ 

20 sin(a,,,) 7r 
u xi. 

Placing the result in Eq. (14) into Eq. (13), the rest of 
This instability due to nonphysical numerical noise can be the a’s can then be determined in a least-squares sense by 
removed by applying an appropriate mathematical filter to minimizing the functional E given by 
the slowness function S(x, z) and/or the output Q on the 
left-hand side of Eq. (4). 

E= 
{J I 

pF f(P) 
-- Pp- 

A Filtering Operator 

One solution to this problem is to numerically estimate a - 1+2~[cos(PlAx)-l]a, 

projection operator which has the following properties: 
i / >I 

2 

dP 

A= 
1 

1, IPI <p, 
+/~~;~X~O-{l+2~(cos(PlAx)-l))a,~2dP 

0, otherwise, (10) 
+~;~-X~O-{l+2~(cos(PlAx)-l)}a,~2dP}. (15) 

/ 

where P, is a lateral wavenumber less than the Nyquist 
value. This will filter out the spatially aliased wavenumbers. 

The resulting general equation for the a’s is 

We approximate /i with a symmetric 2L + 1 length filter A 
given by $.,(l+?) 

(AQ),=oQ,+ i dQj+,+Q,-,I. (11) z.T 
/=I 

Ax Pfi - 4rc s- f(P)(cos(PjAx)-l)dP+;. (16) 
Pf 

Trying a plane wave solution for Q in Eq. (11) yields 

L 

Therefore, the set of projection operator coefficients, the a’s, FIG. 1. A “box car” tit to determine the projection operator. 



FILTERING WAVE EQUATION SOLUTION 185 

FIG. 2. A cosine-tapered tit to determine the projection operator. 

Iff(P) = 1, the equation for evaluating the a’s is 

A diagram representing the least squares lit forf(P) = 1 is 
shown in Fig. 1. The u’s can be generated numerically from 
Eq. (17) with a simple computer subroutine, taking I to be 
five or less. 

In addition to Eq. (17), it has also been found that a live- 
point cosine-tapered lit produces a set of a’s which gives 
very good results. A representation of this fit is shown in 
Fig. 2, where the value of the operator is chosen to be $ at 
P = f P,. The Fourier transform of the a’s is then given by 

and the inverse Fourier transform by 

5 

ak = 1 a,e’2n’k111, 
I= -5 

where 

1 

1 k<P, 

ak= 4 k=P, 
0 k > P,. 

Combining Eqs. (lS)-(20), the a;s are 

a, = i 
L 

1 + 2 “f ’ k=, cos(~>+cos(~PFl)]. 

(18) 

(19) 

(20) 

(21) 

The a’s generated from Eq. (17) or Eq. (21) can be used for 
the projection operator in Eq. (11) to filter out any non- 
physical spatial contributions to the solution in Eq. (4). 

OTHER PROBLEMS 

Some limits on the lateral wavenumber P were given in 
Eq. (8). Imposition of the projection (filter) operator also 
places a limit on P, which consequently, implies a minimum 
angular frequency allowed in the processed data. Let us 
determine this value. 

Since the filter is basically represented by the sum 

1 a, cos( P1 Ax), (22) 

the first zero of this function occurs at 

PI Ax = n/2, (23) 

This means that the minimum value of P to produce zero is 
given by 

Pmin = -5 
21 Ax’ (24) 

But from Eq. (8) the desired zero is seen to be 

w sin CI 
p=---- 

v . (25) 

Combining Eqs. (24) and (25) to solve for the minimum w, 
we must have 

0 > W,in _ 
vmin71 

21 Ax sin(MmaX)’ (26) 

This condition must be specified in the computer algorithm, 
and frequencies below this value not processed. 

Another problem that can occur is instabilities at low 
frequencies. This can be significantly reduced by resampling 
the data more coarsely at low w. Thus, for P Ax < 7c/2, the 
data can be resampled at every other point, for P Ax < n/4 
at every fourth point, for P Ax < rcn/8 at every eighth point, 
etc. The skipped values can be put back into the final pro- 
cessed data using a (sin x)/x filter, or a linear interpolation 
of x values. 

APPLICATION 

The solution in Eq. (4) can be used to extrapolate 
recorded wavefields backwards in time through an 
estimated velocity structure. Imposition of an imaging con- 
dition, such as summing over the extrapolated frequencies, 
generates an image of the subsurface structure [S]. The 
migrated geophysical data are given by the explicit formula 
in Eq. (5), which is now altered to the form 

(x --2nd difference operator) 

Migrated (z-differencing (Projection (Variable (Downward (Record 
section coefficients) operator) velocity continuation section) 

UC4 2)) operator) 

(27) 
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FIG. 3. Point diffractor in time. 

where A is the projection operator developed in this paper. 
It is subject to the limits on the horizontal wave number in 
Eq. (8) and the associated limits on angular frequency in 
Eq. (26). 

The migrated data R(x, z, t = 0) represent reflection coef- 
ficients at boundaries of velocity and/or density contrasts. 
This reflectivity function is obtained explicitly from the 
acquired surface data, R(x, z = 0, t), by the explicit opera- 
tion in Eq. (27). The projection operator A removes spa- 
tially aliased data by filtering S(x, z) as shown in Eq. (27), 
and/or it could also be applied to the reflectivity function 
R(x, z + AZ, w) at each extrapolation step. The forward 
problem of modeling can also be formulated from the solu- 
tion in Eq. (4) by changing all the signs in front of the depth 
z to the opposite sign. 

As an example, let us consider a point diffractor in the 
subsurface. If this “source” were allowed to “explode” and 

I---- X 
feet 

FIG. 4. Reconstructed hyperbolic reflector in depth with no projection 
operator applied. 

FIG. 5. Reconstructed hyperbolic reflector with projection operator 
applied. 

send energy to the surface, a hyperbola would be recorded 
as a function of time [2]. This forward procedure is 
modeling. Collapsing the hyperbola back to a point at 
its true location is the task of migration. Similarly, if we 
consider a hyperbolic reflector “exploding” in the sub- 
surface, it will generate a point amplitude as seen from the 
surface as a function of time. If the point is migrated, we 
should reproduce the hyperbolic reflector. 

Figure 3 shows a point amplitude recorded in time at 
0.964 s. Using the solution in Eq. (27) without applying the 
projection operator A, the point is extrapolated into the 
subsurface producing the hyperbola in Fig. 4. Notice the 
large amounts of spatially-aliased noise that are also 
generated. When the projection operator is included and 
applied to the slowness function in the polynomial solution, 
a much cleaner reflector is produced, as shown in Fig. 5. 

Now let us consider the inhomogeneous case. A good 
question at this point would be why not use existing fan 
(dip) filter techniques? In order to minimize the spatial high 
frequency noise generated from the multiple derivatives in x 

FIG. 6. Syncline depth model. 
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0.4 

0.6 

0.8 

FIG. 7. Synthetic surface data from syncline model. 

in Eq. (4), an appropriate filter must be applied at each 
extrapolation step and it must be a function of localized 
lateral velocity changes in any given area of the data. A 
standardf-k filter assumes homogeneous media, or at most, 
slowly varying velocity media. Hence, the anit-spatial- 
aliasing filter in Eq. (13) is much more flexible and com- 
putationally efficient for explicit depth imaging, and it is 
necessary to produce a superior image in inhomogeneous 
media with rapid vertical and lateral velocity changes. 

As a inhomogeneous model, let us consider a classical 
syncline, as seen in Fig. 6. Vertical and lateral variations in 
velocity across the syncline are from 8000 to 10,000 ft/s. 
Spacing between traces is 110 feet, and the dip of the syn- 
cline flanks is about 14.5”. The known interval velocities 
shown in Fig. 6 are used to migrate the data. 

i0 

1250 

2500 

FIG. 8. Reconstructed syncline model without dip filtering or the anti- 
spatial-aliasing filter. 
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FIG. 9. Reconstructed syncline model using an algorithm based upon 
Eq. (27) with the anti-spatial-aliasing filter. 

The modelled data in Fig. 7 were generated using a ray 
tracing algorithm. This represents synthetic surface seismic 
data acquired by setting off a source and recording the 
primary energy in receivers collocated with the source. It 
shows the characteristic “bow-tie” effect for a syncline. 
An attempted migration of this data without applying dip 
filtering or the anti-spatial-alising filter A is shown in Fig. 8. 
Large amounts of spatially-aliased noise are very evident. In 
contrast, imaging the simulated data with an algorithm 
based on Eq. (27), yields the depth cross section shown in 
Fig. 9. It is an excellent representation of the original model, 
except for some dispersion and some residual noise. As 
another comparison, a standard dip (fan) filter was applied 
to the data and the imaging was performed with the com- 
puter algorithm based on Eq. (5), without the anti-spatial- 
aliasing filter A. The results are shown in Fig. 10. The 
residual noise is much more prevalent, than in Fig. 9. 
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FIG. 10. Reconstructed syncline model using a standard dip (fan) 
filter vs the anti-spatial-aliasing filter 
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Clearly, the built-in anti-spatial-aliasing filter has done a 
superior job, as it has properly reduced spatially-generated 
noise associated with the multiple x-derivatives in Eq. (4) 
and the localized lateral velocity changes. 

A complicated model of a thrust fault similar to those 
encountered in the Utah-Wyoming Overthrust Belt is 
shown in Fig. 11. A synthetic set of zero-offset surface data 
generated by ray tracing is shown in Fig. 12. It exhibits 
numerous bow-tie crossovers, velocity pull-up, and lower 
boundary undulations. It would be very difficult to interpret 
subsurface geology if only this data were used. 

The depth imaged cross section obtained by feeding this 
simulated surface data and the interval velocities into an 
algorithm based upon Eq. (27) with the anti-spatial-aliasing 
filter A is shown in Fig. 13. It gives a very good overlay with 
the original subsurface model. The significant velocity pull- 
up in Fig. 12 has been correctly accounted for, and the lower 
boundary has been properly flattened. The depth image in 
Fig. 13 could be used for drilling decisions. For real data, a 
velocity model like that in Fig. 11 would have to be 
generated by self-consistent modeling [ 51. 

The models in [I] were generated by truncating the fre- 
quency band to reduce spatial aliasing. The limits had to be 
considered and changed for every model at each depth step, 
depending on the velocities, dips, etc. involved, and this 
obviously changes as a function of position in general. The 
choice typically results in some loss of resolution, as well as 
extra decisions to make for every data set processed. It is 
computationally inefficient and very inflexible. However, 
the present digital filter automatically takes care of the 
problem in inhomogeneous media with maximum efficiency 
and/or migration resolution. Furthermore, this filter should 
be applicable to any explicit finite difference modeling 
scheme. 

CONCLUSIONS 

In this paper the algorithm developed in [ 1 ] has been 
altered by (a) filtering out spatially aliased values, with the 
filter coefficients given in Eq. (17) or (21), (b) limiting the 
lower frequency included in the processing according to 
Eq. (26), and (c) reducing low frequency instabilities by 
resampling the data spatially at low frequencies. Equa- 
tion (27) is an explicit finite difference solution to the wave 
equation which can be used in many practical applications, 
such as generating synthetic surface data (modeling) and 
reconstructing subsurface horizons (migration). The solu- 
tion works in inhomogeneous media where velocity changes 
rapidly both vertically and laterally, and the projection 
operator A, with associated frequency limits, filters out both 
inherent-data and numerically-generated spatially-aliased 
noise. As illustrated by some migration examples, a 
reconstructed image is obtained directly in depth with an 
excellent representation of the subsurface geology. 
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